Logo
Scribd, Inc.

Senior Machine Learning Engineer - Discovery (ML + Backend Engineering)

Scribd, Inc., Sacramento, California, United States, 95828

Save Job

Join to apply for the

Senior Machine Learning Engineer - Discovery (ML + Backend Engineering)

role at

Scribd, Inc. About The Company At Scribd (pronounced “scribbed”), our mission is to spark human curiosity. Join our team as we create a world of stories and knowledge, democratize the exchange of ideas and information, and empower collective expertise through our three products: Everand, Scribd, and Slideshare. We support a culture where our employees can be real and be bold; where we debate and commit as we embrace plot twists; and where every employee is empowered to take action as we prioritize the customer. Scribd Flex offers flexibility in daily work style, with occasional in-person attendance required for all Scribd employees. We hire for “GRIT” — Goals, Results, Innovative ideas, and Team collaboration. The Recommendations team powers personalized discovery across Scribd’s products, delivering relevant and engaging suggestions to millions of users. We operate at the intersection of large-scale data, cutting-edge machine learning, and product innovation — collaborating across brands and platforms to enhance user experiences in reading, listening, and learning. Our team is a blend of Frontend, Backend, and ML Engineers who partner closely with Product Managers, Data Scientists, and Analysts. About The Role We’re looking for a Machine Learning Engineer who will design, build, and optimize ML systems that scale to millions of users. You’ll work across the entire lifecycle — from data ingestion to model training, deployment, and monitoring — with a focus on creating fast, reliable, and cost-efficient pipelines. You’ll also play a key role in delivering next-generation AI features like doc-chat and ask-AI that expand how users interact with Scribd’s content. Key Responsibilities Data Pipelines – Collaborate with engineering and analytics teams to build large-scale ingestion, transformation, and validation pipelines on Databricks. Model Development & Deployment – Train, evaluate, and deploy ML models (including generative models) to production using Scribd’s internal platform and industry-standard frameworks. Experimentation – Design and run A/B and N-way experiments to measure the impact of model and feature changes. Cross-Functional Collaboration – Partner with product managers, data scientists, and analysts to identify opportunities, define requirements, and deliver solutions that solve real user problems. Requirements Must Have 4+ years of post qualification experience as a professional ML or software engineer, with a proven track record of delivering production ML systems at scale. Proficiency in at least one key programming language (preferably Python or Golang; Scala or Ruby also considered). Expertise in designing and architecting large-scale ML pipelines and distributed systems. Deep experience with distributed data processing frameworks (Spark, Databricks, or similar). Strong cloud expertise (AWS, Azure, or GCP) and experience with deployment platforms (ECS, EKS, Lambda). Proven ability to optimize system performance and make informed trade-offs in ML model and system design. Experience leading technical projects and mentoring engineers. Bachelor’s or Master’s degree in Computer Science or equivalent professional experience. Nice to Have Experience with embedding-based retrieval, large language models, advanced recommendation or ranking systems. Expertise in experimentation design, causal inference, or ML evaluation methodologies. Benefits & Work Location Working at Scribd, inc. overview of compensation and locations is provided in policy disclosures and varies by geography. Flexible workplace with Scribd Flex; occasional in-person attendance required; base pay ranges and equity eligibility are described per location. Eligibility & EEO We are committed to equal employment opportunity regardless of race, color, religion, national origin, gender, sexual orientation, age, marital status, veteran status, disability status, or any other characteristic protected by law. We encourage people of all backgrounds to apply. How to Apply Please apply through the Scribd careers page. Referrals increase your chances of interviewing at Scribd, Inc.

#J-18808-Ljbffr